Antony M Jose

Associate Professor


Office Phone: 301.405.7028

Lab Phone: 301.405.9513

Lab: 2205 Bioscience Research Building

Office Address: 2136 Bioscience Research Building


Graduate Program Affiliations

  • BISI - BISI-Molecular & Cellular Biology (MOCB)





Research Interests


How is the expression pattern of a gene perpetuated?


Life has diversified since its origin through bottleneck stages that separate successive generations. Each organism develops from the bottleneck stage, typically a single cell, with two distinct stores of information. One is the linear DNA sequence that is replicated during cell divisions. The other is the three-dimensional arrangement of molecules that dictates what is made using the DNA sequence and changes during development but returns to a similar configuration at the start of each generation. These two interdependent stores of information – one replicating with every cell division and the other cycling with a period of one generation – coevolve and together form the cell code for making an organism (see video). This perspective impacts our understanding of the origins of inherited diseases, the course of evolution, and the synthesis of new life.

To understand how the cell code of an organism is set up and transmitted from one generation to the next, we need to ask questions about how processes are perpetuated. Our lab is using the simple worm C. elegans to understand how the expression pattern of a gene is perpetuated. Taking advantage of our recent ability to induce transgenerational epigenetic inheritance, i.e. modify non-genetic aspects of the cell code, our goal is to use reductionist, systems, and engineering approaches to address this question. These studies will begin to reveal the logic of how the information required to build and perpetuate an animal is transmitted across generations.

To build an organism from its cell code in every generation, gene expression patterns need to be orchestrated throughout development. Organisms need to control the equal versus unequal partitioning of gene regulatory information upon cell division, the switch between both forms of cell division, and the coordination of gene expression between cells. While mechanisms of unequal or asymmetric cell division have been studied in the context of development, much less is known about symmetric or equal cell divisions and how organisms switch from asymmetric to symmetric divisions. Yet, the entire cell code is capable of being divided equally as revealed by the existence of twins and by experimental manipulation. Therefore, we are interested in understanding the mechanisms that enable equal cell division, the switch between equal and unequal cell divisions, and the coordination of gene expression between cells. These studies will reveal the regulatory mechanisms that orchestrate gene expression in an organism.


Recent Publications




Jose AM. A framework for analyzing cycling stores of heritable information. arXiv. Online Dec 19, 2019.


Devanapally S, Raman R, Allgood S, Ettefa F, Diop M, Chey M, Lin Y, Cho YE, Yin R, Jose AM. Recovery from transgenerational RNA silencing is driven by gene-specific homeostasis. bioRxiv. Online Jan 7, 2020.






Ravikumar S, Devanapally S, Jose AM. Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference. Nucleic Acids Research. 47(19):10059-71.




Jose AM. Replicating and cycling stores of information perpetuate life. BioEssays. 40(4):1700161. 




Raman P, Zaghab S, Traver EC, Jose AM. The double-stranded RNA binding protein RDE-4 can act cell autonomously during feeding RNAi in C. elegansNucleic Acids Research. 45(14):8463-73.


Choi YS, Edwards LO, DiBello A, Jose AM. Removing bias against short sequences enables northern blotting to better complement RNA-seq for the study of small RNAs. Nucleic Acids Research. 45(10):e87.


Marré J and Jose A. Inheritance of extracellular nutrition and information in Caenorhabditis elegansMolecular Reproduction & Development. 84(4):283.




Marré JA, Traver EC, Jose AM. Extracellular RNA is transported from one generation to the next in C. elegans. Proceedings of the National Academy of Sciences USA. 113(44):12496-501.


Le HH, Strauss B, Bloodgood M, Jose AM. Tissue homogeneity requires inhibition of unequal gene silencing during development. Journal of Cell Biology. 214(3): 319-331.


Blumenfeld AL, Jose AM. Reproducible features of small RNAs in C. elegans reveal NU RNAs and provide insights into 22G RNAs and 26G RNAs. RNA. 22:184-192.




Jose AM. Movement of regulatory RNA between animal cells. genesis. 53(7): 395-416.


Devanapally S, Ravikumar S, Jose AM. Double-stranded RNA made in C. elegans neurons can enter the germline and cause transgenerational gene silencing. Proceedings of the National Academy of Sciences USA. 112(7):2133-8.


Selected Awards


2019               Graduate Faculty Mentor of the Year, UMD

2016               National Academy of Sciences Kavli Fellow




2005               PhD, Yale University

2011               Postdoc, Harvard University